## Metal & Electronics: Ink Jets as Manufacturing Tools

## Cleaner Technology and Energy Efficiency: Structuring a Competitive Advantage

Office of Technical Assistance & Technology

April 5, 2007

Boxborough, Massachusetts

Linda T. Creagh, Ph. D

Business Development Director

FUJIFILM Dimatix



# Metal & Electronics: Ink Jets as Manufacturing Tools

- Advantages for Manufacturing with Ink Jets
- Jetting Functional Fluids in the Lab
- Status of Ink Jets in Manufacturing
- New Technology for Development and Manufacturing



## **Ink Jet Market Perspective**





## Advantages of Ink Jets in precision Fabrication

- Ink jet is non-contact digital printing
  - Consistent drop volume
  - Accurate drop placement
- Additive = does not waste expensive materials
- Special fluids formulated for each application
- Deposition system is ink jet, fluid, printer and software







#### Ink Jets in Action



Precise deposition of material only where it is needed Productivity is a function of the number of nozzles used



#### **Materials Deposition Markets**



#### Displays

- Flat Panel Displays
- PLED
- LCD
- Color Filters
- Display Backplanes
- Flexible Displays



#### Chemical

- Material Development
- Substrate Development
- Coatings



#### **Electronics**

- Flex Circuits
- RFID
- PCB Photomasks
- Wearable Electronics
- Solar
- Fuel Cells
- Batteries



#### 3D Mechanical

- 3D Assembly Systems
- Sensing



#### Life Science

- DNA
- Proteomics
- Antibodies
- Food Science
- Pathogen Detection
- Medical Devices



#### **Optical**

- Optical Lenses
- Light Pipes



# Market Potential for Ink Jet Manufacturing: Printed Electronics





# World-wide Focus on Printed Electronics: OE-A Game Board Demonstrator (1st Version)



## More Manufacturing Opportunities for Ink Jets

- Printed Circuit Boards (PCB) & Traditional Electronics
  - Etch Mask
  - Solder Mask
  - Legend
  - Conductive Traces
  - Solder Interconnects
  - Adhesives
  - Micro-optics
  - Embedded Resistors, Inductor and Capacitors
  - Batteries
  - Photovoltaics



Other examples of flexible electronics applications



## **PCB Embedded Components**



#### **PTF Resistor Process Flow**



**Courtesy AT&S, Austria** 



# Jettable PCB Fluids Are Key to Manufacturing Success

Mechanical Properties
Hardness
Adhesion
Morphology
Environmental Testing







**Courtesy AT&S, Austria** 



## **PCB Quality Requirements**

#### Print Quality - Droplet formation and Line formation



Courtesy AT&S, Austria



#### **Jetted Solder Resist**



- •30 pL Drops
- UV-Cured Resist by Rohm&Haas EM



#### **Nano Particle Conductive Silver**





SEM images of a layer of printed ink, before and after a 10 min cure at 180 °C

#### **Courtesy Cabot/SMP**



## **DMP** working at Holst Centre





#### **Ink Jet Printed OSC Transistors**



## Plastic Logic inkjet printed TFT





**Epson prototype transistor PEDOT is inkjet applied** 

## **Product Development Cycle**



**FUJ!FILM** 

# Manufacturing Equipment: IJP Polyimide Coater System



**ISHIIHY®KI** 

Ishii Hyoki Co.,Ltd.

**IJP PI Coater System** 



## Advantages of Ink Jets in Manufacturing LCD Alignment layer

- Replaces flexo printing of polyimide solution
- Ink jet is additive:
  - Saves ~ 200K\$ fluid/machine per year
  - Ink jet production polyimide coater costs 50% of flexo system



# Manufacturing Equipment: Litrex Corporation





#### **RGB Color Filters via Ink Jets**

- LCD color filters are large % of total panel cost
- Ink jet technology provides cost reductions up to 40%
- Material usage reduced 20-30%
- Investment cost reductions > 50%
- Environmentally friendly
- High volume production planned for 2007



# Before Manufacturing: Jetting Functional Fluids in the Lab

- Provide cost-effective ink jet system for formulating functional fluids
- Provide cost-effective ink jet system for process development and improvement
- Provide an easy-to-use system that is scalable from lab to production



## **Dimatix Materials Printer (DMP)**

- Enables evaluation of fluids
  - Conductivity and resolution for antenna
  - Feature definition and performance for organic electronics
- Enables process development
  - Cure cycles for plastic substrates
  - Evaluate drop spread vs. surface treatments
  - Evaluate fluid adhesion and robustness
- Generates samples







# New Technology for Development and Manufacturing: Motivation

- Conductive traces for backplanes need to be ~ 20 microns
- Solar cell fabrication needs traces < 75 microns</li>
- Organic TFTs need fine feature size
- 10 pL drops
  - 40-100 micron line width depending on fluid, substrate, and drop frequency



## **FUJIFILM Dimatix Announces 1 Picoliter Ink Jet Products!**

- Smallest drop size for production
- Fully integrated MEMS process
- Wide fluid compatibility
- 16-jet cartridges for Dimatix Materials Printer





## 10 and 1 Picoliter Drops on Si Wafer





## 1 pL Jetting with DMP



# Conductive Silver on Teslin: Printed with 1 pL DMP Cartridge





## **Future Directions for Ink Jet Manufacturing**

#### Line width

Today 2-5 years >5 years

Laboratory 25um 10um 5um

Pilot 50um 20um 5um

**Production** 

High Volume 70um 25um 10um

**Production** 



# New Products Essential for Materials Deposition Revenue Growth

- 128 jet printhead
  - Enables customers to move to pilot production based on initial results from DMP
  - Basic element for stacked printheads or printhead array

- Stacked printhead
  - Enables customers to achieve production throughput in a scanning system
- Printhead array
  - Enables customers to achieve production throughput in a single pass system



# Conclusions: Ink Jets are Proving Valuable Tools for Materials Deposition

#### NOW:

- Ink jets incorporated into commercial FPD manufacturing equipment
- Ink jets in pilot manufacturing organic electronics
- R&D materials deposition printer available (DMP)

#### • FUTURE:

- Smaller features
- Higher productivity
- New opportunities

- Polymer solar film
- Flexible polymer-based lighting
- Electronic books
- Printed polymer backplanes
- Transparent solar cells
- Flexible electronics and batteries
- Paper-like products
- Disposable diagnostic devices
- Intelligent packaging
- Large area electronics



